Homotopic maps in the general linear group

Prove that the maps \mathrm{GL}(n,\mathbb R)\times \mathrm{GL}(n,\mathbb R)\longrightarrow \mathrm{GL}(2n,\mathbb R) that send (A,B) to the block matrices \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} and \begin{pmatrix} AB & 0\\ 0 & 1\end{pmatrix} are homotopic.

Advertisements
Homotopic maps in the general linear group

One thought on “Homotopic maps in the general linear group

  1. The solution we came up with Iván:

    The homotopy is given by (A,B,t)\mapsto \begin{pmatrix} A & 0\\ 0 & B\end{pmatrix} \begin{pmatrix} 1 & tB\\ 0 & 1\end{pmatrix} \begin{pmatrix} 1 & 0\\ -tB^{-1} & 1\end{pmatrix}\begin{pmatrix} 1 & tB\\ 0 & 1\end{pmatrix}\begin{pmatrix} 1 & -t\\ 0 & 1\end{pmatrix}\begin{pmatrix} 1 & 0\\ t & 1\end{pmatrix}\begin{pmatrix} 1 & -t\\ 0 & 1\end{pmatrix}, and it is in fact smooth. This actually proves that the subspace of matrices of the form \begin{pmatrix} B & 0\\ 0 & B^{-1}\end{pmatrix} is contractible in \mathrm{GL}(2n, \Bbb{R}).

    Some other minor observation: this is some kind of homotopical version of Whitehead’s lemma in K-theory.

    Liked by 2 people

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s