Too complex to be true but too symmetrical to be false

For i\in\{1,2\}, let D_i be a complex domain and let z_i \in D_i. Let B_i be a complex Brownian motion starting from z_i. Set T_i = \inf \{t > 0 : B_i(t) \notin D_i\}.

Suppose that there exists a conformal isomorphism \varphi : D_1 \to D_2 such that \varphi (z_1) = z_2 . Set \tilde{T} = \int_0^T |\varphi' (B_1(t))|dt and define for t< \tilde{T}

\tau(t)= \inf \{s>0 : \int_0^s|\varphi' (B_1(r))|dr=t\} and \tilde{B}(t) = \varphi(B_1(\tau(t))).

Then (\tilde{T}, (\tilde{B}(t))_{t<\tilde{T}}) and (T_2, (B_2(t))_{t<T_2}) have the same distribution.

Advertisements
Too complex to be true but too symmetrical to be false

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s